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SUMMARY  

In this paper, we propose the principal components applicable in the case of multivariate 
repeated measures data under the following assumptions: (1) multivariate normality for 
the vector of observations xj, (2) Kronecker product structure of the positive definite 
covariance matrix Ω. Computational schemes for maximum likelihood estimates of 
required parameters are also given. 

Key words: Principal component analysis; repeated measures data; Kronecker product 
covariance structure; maximum likelihood estimates 

1. Introduction 

Suppose that we have a sample of n objects characterized by p variables, 
measured in T different time points or physical conditions. Such data are often 
referred to in the statistical literature as multivariate repeated measures data or 
doubly multivariate data. Let X jk be a p×1 column vector of measurements on 
the jth individual at the kth time point, let 

X j = ( X j1, X j2,…, X jT ) 

be a p×T matrix and let xj = vec (X j), j = 1, 2,…, n; k = 1, 2,…, T. 
The vector xj is a (pT×1)-dimensional column vector obtained by stacking 

all p variables at the first time point, then stacking all p variables at the second 
time point below it and so on. 
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Next, assume that 

xj ~ NpT( µ, Ω), j = 1, 2,…, n 

with pT×pT positive definite covariance matrix Ω.  
Our goal is to construct principal components based on these doubly 

multivariate data. 
Principal components analysis (PCA) (Hotelling,1933) was introduced as a 

technique for deriving a reduced set of orthogonal linear projections of a single 
collection of correlated variables x, where the projections are ordered by 
decreasing variances. Variance is a second-order property of a random variable 
and is an important measurement of the amount of information in that variable. 
PCA has also been referred to as a method for “decorrelating” x, and as a result 
the technique has been independently rediscovered by many different fields, 
with alternative names such as “Karhunen–Loève transform” and “empirical 
orthogonal functions”, which are used in communications theory and 
atmospheric science respectively. PCA is used primarily as a dimensionality-
reduction technique. In this role, PCA is used, for example, in lossy data 
compression, pattern recognition, and image analysis. 

In addition to reducing dimensionality, PCA can be used to discover 
important features of the data. Discovery in PCA takes the form of graphical 
displays of the principal component scores. The first few principal component 
scores can reveal whether most of the data actually live on a linear subspace of 
ℜp and can be used to identify outliers, distributional peculiarities, and clusters 
of points. The last few principal component scores show those linear projections 
of x that have the smallest variance; any principal component with zero or near-
zero variance is virtually constant, and hence can be used to detect collinearity, 
as well as outliers that alter the perceived dimensionality of the data. 

Principal components are constructed on the basis of the covariance matrix 
estimator. The covariance matrix Ω is positive definite. Its estimate ΩΩΩΩ̂  is 
positive definite with probability 1 if and only if n > pT (see, e.g. Giri (1996), 
p.93). Hence estimation of the parameters µ and Ω will require a very large 
sample, which may not always be feasible. Hence we assume Ω to be of the 
form (Roy and Khattree, 2005): 

Ω = V ⊗ ΣΣΣΣ , 
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where V is a T×T positive define covariance matrix. The matrix V represents 
the covariance between repeated measures on a given object and for a given 
characteristic. Likewise, ΣΣΣΣ represents the covariance between all characteristics 
on a given object and for a given time point. The above covariance structure is 
subject to an implicit assumption that for all characteristics, the correlation 
structure between repeated measures remains the same, and that covariance 
between all characteristics does not depend on time and remains constant for all 
time points. 

In this case the estimates of the matrices V and ΣΣΣΣ are positive definite with 
probability 1 if and only if n > max(p, T). 

As noted in the literature, e.g. Galecki (1994) and Naik and Rao (2001), 
since  

(cV ) ⊗ (c-1ΣΣΣΣ ) = V ⊗ ΣΣΣΣ , 

all the parameters of V and ΣΣΣΣ are not defined uniquely. Thus, without loss of 
generality, assume that for ΣΣΣΣ = (σij), σpp = 1, or equivalently assume that for V = 
(vij), vTT = 1 instead of σpp = 1. 

In this paper, we propose the principal components applicable in the case of 
multivariate repeated measures data under the following assumptions: 
(1) multivariate normality for the vector of observations x,  
(2) Kronecker product structure of the positive definite covariance matrix Ω.  

In Section 2 the principal components are presented in the case where no 
structures whatsoever are imposed on V and ΣΣΣΣ except that they are positive 
definite and vTT = 1. In Section 3, we test the hypothesis that the general pT×pT 
covariance matrix has the form Ω = V ⊗ ΣΣΣΣ, against the alternative that the 
covariance matrix is not of Kronecker product structure. In Section 4 we present 
an example. 

2. Principal Component Analysis 

Let 

∑=
=

n

1j
jn

1
XX ,                    (2.1) 

XXX −= jjc ,                 (2.2) 
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and 

( )jcTjc1jc , XXX = ,                  (2.3) 

where 1jcX is a p×(T–1) matrix and jcTX is a p×1 vector, j = 1, 2,…, n. For 
V = (vrs), we only assume that vTT = 1. 

In this case the maximum likelihood estimation equations are of the form 
(Srivastava et al. 2008): 

Xµ =ˆ , 
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where  
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=

− XΣX ,          (2.5) 

and  

∑=
=

−n

1j

T
jc

1
jc

ˆ
nT

1ˆ XVXΣ .          (2.6) 

In this case no explicit maximum likelihood estimates of V and ΣΣΣΣ are available. 
The MLEs of V and ΣΣΣΣ are obtained by solving simultaneously and iteratively 
the equations (2.4) and (2.6) subject to condition (2.5). This is the so called 
“flip-flop” algorithm. 

Srivastava et. al. (2008) have proved that if n > max(p, T) then the 
maximum likelihood estimation equations given by (2.4) and (2.6) subject to the 
condition (2.5) will always converge to the unique maximum.      

The following iterative steps are suggested to obtain the maximum 
likelihood estimates of  V and ΣΣΣΣ. 



 
 
 
 

PCA in the case of multivariate repeated measures data 
 

 

 
 
 
 

167 

Algorithm 

Step 1. Get the initial covariance matrix ΣΣΣΣ of the form  

( )( )Tj
n

1j
jnT

1~
XXXXSΣ −∑ −==

=
.             (2.7) 

Step 2. Based on the initial covariance matrix S, compute the matrix V̂ given by 
(2.4) and replace each element rsv̂  by TTrs v̂/v̂ . 
Step 3. Compute the matrix Σ̂  from equation (2.6) using the V̂ obtained in  
Step 2. 
Step 4. Repeat Steps 2 and 3 until convergence is attained.  

We selected the following stopping rule: Compute two matrices: (a) a 
matrix of difference between two successive solutions of (2.4), and (b) a matrix 
of difference between two successive solutions of (2.6). Continue the iterations 
until the maxima of the absolute values of the elements of the matrices in (a) 
and (b) are smaller than the pre-specified quantities. 

Principal components are constructed on the basis of the V̂ ⊗ ΣΣΣΣ̂  matrix. If 
n > max(p, T) then V̂ ⊗ ΣΣΣΣ̂  is a positive define matrix with probability 1 and all 
the characteristic roots/eigenvalues of V̂ ⊗ ΣΣΣΣ̂  are real and positive. One of the 
main reasons for interest in the Kronecker product is the beautifully simple 
connection between the eigenvalues and the eigenvectors V̂ and ΣΣΣΣ̂  and V̂ ⊗ ΣΣΣΣ̂  
(see e.g. Lancaster and Tismenetsky (1995), p.412 or Ortega (1987), p.237).  
If α1, α2,…, αT are the eigenvalues of V̂ and β1, β2,…, βp are the eigenvalues of 
ΣΣΣΣ̂ , then eigenvalues of V̂ ⊗ ΣΣΣΣ̂  are the pT numbers αrβs , r = 1, 2,…, T, s =  
1, 2,…, p. 

If u = (u1, u2,…, uT)
T is an eigenvector of V̂  corresponding to the 

eigenvalues α, and w = (w1, w2,…, wT)
T is an eigenvector of ΣΣΣΣ̂  corresponding 

to the eigenvalues β, then an eigenvector γγγγ of V̂ ⊗ ΣΣΣΣ̂  associated with αβ is γγγγ = 
u ⊗ w = (u1w

T, u2w
T,…, uTw

T)T. 
Let λ1 > λ2 >…> λpT > 0 be the ordered characteristic roots of V̂ ⊗ ΣΣΣΣ̂ . Then 

there exists an orthogonal matrix ΓΓΓΓ = (γγγγ1, γγγγ2 ,…, γγγγpT), ΓΓΓΓΓΓΓΓT = I pT, such that ΓΓΓΓT ΩΩΩΩ̂ ΓΓΓΓ 
= Dλ = diag(λ1, λ2,…, λpT). 
Hence, if we let  
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then Cov(y) = Dλ, and the components y1 = T
1γ x, y2 = T

2γ x,…., ypT = T
pTγ x are 

uncorrelated. The component y1 = T
1γ x is called the first principal component, 

y2 = T
2γ x the second principal component, and so on. The variance of  yi is λi. 

Since λ1 + λ2 +…+ λpT = tr(V̂ ⊗ ΣΣΣΣ̂ ), the sum of the variance of the pT principal 
components is the same as the sum of the variance of the old variables, 
measured at T different time points. Thus the components with smaller 
variances could be ignored without significantly affecting the total variance, 
thereby reducing the number of variables from pT to, say, k ≤ pT.   

Since tr(V̂ ⊗ ΣΣΣΣ̂ ) - ∑∑ +== λ=λ pT

1kj j
k

1j j , the proportion of the total univariate 
variance accounted for by k PCs is ∑∑ == λλ pT

1j j
k

1j j / , which may be used as  
a criterion for selecting a subspace of k components from pT. 

3. Testing that the Kronecker model holds 

We wish to test the hypothesis H0: Ω = V ⊗ ΣΣΣΣ against the alternative Ha: Ω 
unstructured, using the likelihood ratio test (LRT). 

The likelihood ratio test compares the maximum value of the likelihood 
function L restricted to the region defined by the null hypothesis H0, to the 
maximum of the likelihood function L in the unrestricted region Ha. Thus the 
ratio  

Lmax

Lmax

a

0

H

H=Λ
 

or a function of it, is used as the best statistic to test the null hypothesis H0. It is 
well known that, for large samples and under a normality assumption, -2lnΛ is 
approximately 2

νχ  under H0 where the degrees of freedom ν is equal to the 
number of parameters estimated under Ha minus the number of parameters 
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estimated under H0. The maximum likelihood estimators of V and ΣΣΣΣ have been 
obtained in Section 2. The MLE of  Ω, under the alternative, is given by 

ΩΩΩΩ̂ = ∑
=

n

1j

T
jcjc ))(vec())(vec(

n

1
XX , n > pT.        (3.1)  

Thus the LRT for H0 against Ha is given by (Srivastava et. al. 2008) 
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where δ1 > δ2 >…> δpT are the eigenvalues of ΩΩΩΩ̂ . 

       From asymptotic theory, -2lnΛ ~ .2

1)1T(T
2

1
)1p(p

2

1
)1pT(pT

2

1 ++−+−+
χ  

4. Example 

A laboratory experiment was set up to investigate the effect of growth of 
inoculating paspalum grass with a fungal infection applied at four different 
temperatures (14, 18, 22, 260C). For each pot of paspalum, measurements were 
made of three variables: 
• fresh weight of roots (gm), 
• maximum root length (mm), 
• fresh weight of tops (gm). 
The inoculated group was compared with a control group and six three-
dimensional observations were made of each treatment-temperature 
combination. These are given in Table 9.10 of the monograph by Seber (1984). 
In our case p = 3, T = 4, n = 12. 

Since pT = n, the positive definite estimate of the covariance matrix Ω does 
not exist and hence multivariate normality with Ω = V ⊗ ΣΣΣΣ is assumed. 

The maximum likelihood estimates of the upper triangle of covariance 
matrices V and ΣΣΣΣ subject to the condition 1vTT =ˆ

 are: 
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The eigenvalues of V̂ are: α1 = 5.7456, α2 = 3.0210, α3 = 0.9467, α4 = 0.1023. 
The eigenvectors of V̂ corresponding to the eigenvalues α1 and α2 are: 
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The eigenvalues of ΣΣΣΣ̂  are:  β1 = 34.0928,  β2 = 6.4274,  β3 = 0.7668. 
The eigenvectors of ΣΣΣΣ̂  corresponding to the eigenvalues β1 and β2 are: 
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The eigenvalues of V̂ ⊗ ΣΣΣΣ̂  are: 

λ1 = α1 β1 = 195.8853,  λ2 = α2 β1 = 102.9950,  λ3 = α1 β2 = 36.9294,   

λ4 = α3 β1 = 32.2774,  λ5 = α2 β2 = 19.4172,  λ6 = α3 β2 = 6.0851,   

λ7 = α1 β3 = 4.4056,  λ8 = α4 β1 = 3.4884,  λ9 = α2 β3 = 2.3164,   

λ10 = α3 β3 = 0.7259,  λ11 = α4 β2 = 0.6576,  λ12 = α4 β3 = 0.07885. 

The eigenvectors of V̂ ⊗ ΣΣΣΣ̂  corresponding to the eigenvalues λ1 and λ2 
respectively are: 
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The first principal component is y1 = T
1γ x and the second principal component 

is y2 = T
2γ x, where vector x is a (12×1)-dimensional column vector obtained by 

stacking the measurements of all three variables at the first temperature, then 
stacking the measurements of all three variables at the second temperature 
below it, and so on.  
The first two principal components account for %100)/)(( 12

1i i21 ×λλ+λ ∑ =  
= 73.75% of the total variation. Plotted values of the first two principal 
components for individual measurements are shown in Figure 1. We see that 
these two groups are well separated. 
 

 
Figure 1. Plotted values of the first two principal components for individual 

measurements; ♦– Inoculated • – Control 
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