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SUMMARY

In this paper, we propose the principal componapfdicable in the case of multivariate
repeated measures data under the following assomspt{l) multivariate normality for
the vector of observations, (2) Kronecker product structure of the positivefinite
covariance matrix2. Computational schemes for maximum likelihood eatem of
required parameters are also given.
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1. Introduction

Suppose that we have a sample of n objects chaestieby p variables,
measured in T different time points or physicalditans. Such data are often
referred to in the statistical literature as multiate repeated measures data or
doubly multivariate data. LeXy be a px1 column vector of measurements on
the jth individual at the kth time point, let

Xj = (le, Xj21---,XjT)

be a pxT matrix and le§ = vec ;),j =1, 2,...,n;k=1,2,..., T.

The vectorx; is a (pTx1)-dimensional column vector obtained tacking
all p variables at the first time point, then siagkall p variables at the second
time point below it and so on.
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Next, assume that
X~ Nor( 1, Q),j=1,2,...,n

with pTxpT positive definite covariance matfkx

Our goal is to construct principal components basedthese doubly
multivariate data.

Principal components analysis (PCA) (Hotelling,198@s introduced as a
technique for deriving a reduced set of orthogdinelar projections of a single
collection of correlated variables, where the projections are ordered by
decreasing variances. Variance is a second-ordg@epy of a random variable
and is an important measurement of the amountfofrmration in that variable.
PCA has also been referred to as a method for fddating” X, and as a result
the technique has been independently rediscoveyeahdny different fields,
with alternative names such as “Karhunen-Loevesfomm” and “empirical
orthogonal functions”, which are used in communa® theory and
atmospheric science respectively. PCA is used pilynas a dimensionality-
reduction technique. In this role, PCA is used, émample, in lossy data
compression, pattern recognition, and image arglysi

In addition to reducing dimensionality, PCA can bsed to discover
important features of the data. Discovery in PCRetathe form of graphical
displays of the principal component scores. Th& fiew principal component
scores can reveal whether most of the data actliadhyon a linear subspace of
(0" and can be used to identify outliers, distributiopeculiarities, and clusters
of points. The last few principal component scatesw those linear projections
of x that have the smallest variance; any principalament with zero or near-
zero variance is virtually constant, and hencelmnsed to detect collinearity,
as well as outliers that alter the perceived dinmradity of the data.

Principal components are constructed on the bdiglseocovariance matrix
estimator. The covariance matrQ is positive definite. Its estimat® is
positive definite with probability 1 if and only if > pT (see, e.g. Giri (1996),
p.93). Hence estimation of the parameterand Q will require a very large
sample, which may not always be feasible. HenceaggsmimeQ to be of the
form (Roy and Khattree, 2005):

Q=v0Odz,
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whereV is a TxT positive define covariance matrix. ThetniraV represents
the covariance between repeated measures on a gject and for a given
characteristic. Likewise, represents the covariance between all charactsristi
on a given object and for a given time point. Thewe covariance structure is
subject to an implicit assumption that for all cweristics, the correlation
structure between repeated measures remains the, send that covariance
between all characteristics does not depend ondimderemains constant for all
time points.

In this case the estimates of the matri¢esndX are positive definite with
probability 1 if and only if > max(p, T).

As noted in the literature, e.g. Galecki (1994) &alk and Rao (2001),
since

(cV)O(c'z)=vOx,

all the parameters of andZ are not defined uniquely. Thus, without loss of
generality, assume that f&r= (g;), 0y, = 1, or equivalently assume that for=
(vi), vrr = L instead ob,, = 1.

In this paper, we propose the principal componapfdicable in the case of

multivariate repeated measures data under thenfiolipassumptions:
(1) multivariate normality for the vector of obsationsx,
(2) Kronecker product structure of the positiveiniés covariance matrig.

In Section 2 the principal components are preseimdte case where no
structures whatsoever are imposed\orand X except that they are positive
definite and yr = 1. In Section 3, we test the hypothesis thagdmeeral pTxpT
covariance matrix has the for@ = V [0 X, against the alternative that the
covariance matrix is not of Kronecker product dtmee. In Section 4 we present
an example.

2. Principal Component Analysis
Let

XJ'C:XJ'—X, (2.2)
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and
xjc = (chl’ ijT)’ (2.3)

whereX ., is a px(T-1) matrix andX ., is a px1 vector, j = 1, 2,..., n. For
V = (v,s), we only assume thatv= 1.

In this case the maximum likelihood estimation diuns are of the form
(Srivastava et al. 2008):

A

p=X,

DT o1 DT o1
~ _lejclz chl- _lejclz chT Teo
=_— | )= )= - Fy=ly,
V—np N1 el N1 oel —npg‘,lXJCE Xic (2.4)
lechE Xjc1s lechE XicT 1=
J= J=

where
N,T &1
2 XjeTE " X jeT =NP, (2.5)
J:
and
oo 1 Q0 g1y T

In this case no explicit maximum likelihood estiembfV andZ are available.
The MLEs ofV andZ are obtained by solving simultaneously and iteedyi
the equations (2.4) and (2.6) subject to condi{@13). This is the so called
“flip-flop” algorithm.

Srivastava et. al. (2008) have proved that i&>mmax(p, T) then the
maximum likelihood estimation equations given byljZand (2.6) subject to the
condition (2.5) will always converge to the uniquaximum.

The following iterative steps are suggested to inbtdne maximum
likelihood estimates of/ andx.
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Algorithm

Step 1. Get the initial covariance matEof the form

~

£= :n—z(x -x)(x; =)' 2.7)

Step 2. Based on the initial covariance ma&ixompute the matrix/ given by
(2.4) and replace each element by V. /Vr.

Step 3. Compute the matriX from equation (2.6) using th¥ obtained in
Step 2.

Step 4. Repeat Steps 2 and 3 until convergend&iaed.

We selected the following stopping rule: Compute tmatrices: (a) a
matrix of difference between two successive sohgtiof (2.4), and (b) a matrix
of difference between two successive solution2d)( Continue the iterations
until the maxima of the absolute values of the elets of the matrices in (a)
and (b) are smaller than the pre-specified quastiti

Principal components are constructed on the bddiseoV 0% matrix. If
n > max(p, T) thenV O is a posmve deflne matrix with probability 1 aatl
the characteristic roots/elgenvalues\bﬁ] > are real and positive. One of the
main reasons for interest in the Kronecker prodsdlhe beautlfully S|mple
connection between the eigenvalues and the elgm(éé ands andV OX
(see e.g. Lancaster and Tismenetsky (1995), p.41Qrega (1987), p.237).
If a, a,,..., ar are the eigenvalues &I’ andpy, Ba,..., Bp are the eigenvalues of
i, then eigenvalues of O3 are the pT numbersBs, r=1, 2,..., T, s =

2,...,p-

If u= (W W.. W) is an eigenvector oV corresponding to the
eigenvaluest, andw = (W, W,,..., Wy)' is an eigenvector o corresponding
to the eigenvalueB, then an eigenvectgrof V O3 associated witlp isy =
uOw=(w', kLw',..., uw')".

LetA; > A, >...> Apr > 0 be the ordered characteristic rootSvbf] 3. Then
there exists an orthogonal matfix= (y, Yz ,..., Ypr), m’= Io7, such that'Tf2 r
=D, = diagQ1, Az ..., Apr).

Hence, if we let
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vy ] 11 V1X
Y2 5 YaX
y= = FTX = 2 X = 2
Yo Yor| | YerX)

then Covy) = D,, and the components ¥ y{ X, Y2 = Y3 X....., Ypr = Y7 X are
uncorrelated. The componenty le x is called the first principal component,
Yo = y; x the second principal component, and so on. Thamneg of yis A;.
SinceA; + Ay +...+ Apr = tr(\7 0 i), the sum of the variance of the pT principal
components is the same as the sum of the variahdbeoold variables,
measured at T different time points. Thus the camepts with smaller
variances could be ignored without significantlyeafing the total variance,
thereby reducing the number of variables from pBé&y, k< pT.

Since tr(\7 0 i) -ijzl)\j = f:kﬂ)\j , the proportion of the total univariate
variance accounted for by k PCs Ejk:l}\j/ j’Tl)\J which may be used as
a criterion for selecting a subspace of k compa&nm pT.

3. Testing that the Kronecker model holds

We wish to test the hypothesig:H2 =V O X against the alternative ,H(Q)
unstructured, using the likelihood ratio test (LRT)

The likelihood ratio test compares the maximum gatif the likelihood
function L restricted to the region defined by thall hypothesis ki to the
maximum of the likelihood function L in the unrested region H Thus the
ratio

A= max, L
max, L

or a function of it, is used as the best statistitest the null hypothesis,Ht is
well known that, for large samples and under a rditynassumption, -2 is
approximatelyx\z, under H where the degrees of freedomis equal to the
number of parameters estimated undegrninus the number of parameters
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estimated under {1 The maximum likelihood estimators @fandX have been
obtained in Section 2. The MLE &, under the alternative, is given by

Q :% .Ell(vec(xjc)) (VeC(ch))T ,n>pT. (3.1)
J:

Thus the LRT for jagainst His given by (Srivastava et. al. 2008)

1
1 pPT_ 12
a2" _I'Il5i
— — 1=
AN=— 1 1 1 (3-2)
~1=NpP|~|=NT —np -nT
U (1 ) e )
na; B
i=1 i=1

whered, > &, >...> d,r are the eigenvalues 6! .

From asymptotic theory, -2\~ 2 .
ymp d X%pT(pTﬂ)—%p(pﬂ)—%T(T+1)+1

4. Example

A laboratory experiment was set up to investigdte éffect of growth of
inoculating paspalum grass with a fungal infectapplied at four different
temperatures (14, 18, 22,°%29. For each pot of paspalum, measurements were
made of three variables:
» fresh weight of roots (gm),
e maximum root length (mm),
» fresh weight of tops (gm).
The inoculated group was compared with a contraugrand six three-
dimensional observations were made of each tredatremperature
combination. These are given in Table 9.10 of tlemograph by Seber (1984).
Inourcasep=3,T=4,n=12.

Since pT = n, the positive definite estimate of ¢beariance matrif2 does
not exist and hence multivariate normality widte V [0 X is assumed.

The maximum likelihood estimates of the upper glanof covariance
matricesV andX subject to the condition;; =1 are:
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0.1094 -0.0392 -0.1262 -0.0230
57266 0.0592 0.2925

V =
29797 -0.2706
1
and
37203 62975 5.4486
Y= 26,6551 105388|.

109115

The eigenvalues o‘fA/Aare:al =5.74560, = 3.021005 = 0.94670, = 0.1023.
The eigenvectors o¥ corresponding to the eigenvalwesanda; are:

-0.00755 -0.04177
0.998005 -0.00786
up = and up= .
0.015773 0.990169
0.060658 -0.13326

The eigenvalues o are: B1=34.0928,3,=6.4274,3; = 0.7668.
The eigenvectors aE corresponding to the eigenvalygsandf3, are:

0.25795 0.360580
w; =| 0855251 and w,=|-0516800,
044944 0.776465

The eigenvalues o O are:
A1=a; B =195.8853,\, =0, 31 = 102.9950,A; = a; B, = 36.9294,
Aa=03B1=32.2774,As =0, B, = 19.4172,\¢ = 03 B, = 6.0851,
A7z =0y B3 =4.4056,\s =04 31 = 3.4884,Ag = 0, B3 = 2.3164,
A10=03B3=0.7259, 11 = 04 B, = 0.6576,A1, = 014 B3 = 0.07885.

The eigenvectors ofV 0% corresponding to the eigenvalugds and A,
respectively are:
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y1=udwg =

-0.00195|
—-0.00645
—-0.00339
0.25744
0.85354
0.44855
0.00407
0.01349
0.00709
0.01565
0.05188

0.02726

and Y2 =U2DW1=

-0.01077|
-0.03572
—-0.01877
-0.00203
—-0.00673
—-0.00353

0.84684
0.44503
-0.03438
~0.11397
~0.05989)

0.25542"

171

The first principal component is ¥ yI x and the second principal component
IS ¥ = y; X, where vectok is a (12x1)-dimensional column vector obtained by
stacking the measurements of all three variablebeafirst temperature, then
stacking the measurements of all three variableth@tsecond temperature
below it, and so on.
The first two principal components account f(:(0\l+)\2)/zi1:217\i)><100)/o
=73.75% of the total variation. Plotted values tbé first two principal
components for individual measurements are showignre 1. We see that
these two groups are well separated.
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Figure 1. Plotted values of the first two principal comporssfar individual
measurement®;— Inoculatec — Control
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